• Maqnelson John Deere

Pesquisa usa modelo biofísico para simular impactos das mudanças climáticas em cana-de-açúcar



Estudos de cientistas do Reino Unido, Alemanha e Brasil procurou calibrar e avaliar o modelo Joint UK Land Environment (JULES) sobre os impactos do clima na cana-de-açúcar. Para isso, informações de 11 experimentos de campo em todo o País, totalizando 25 safras, foram compiladas sob diferentes condições de clima e solo, além de dados de carbono e medições de biomassa. As simulações mostraram que as altas temperaturas diárias, superiores a 35°C, podem gerar forte impacto negativo na produtividade da cana-de-açúcar.


De acordo com o pesquisador Osvaldo Cabral, da Embrapa Meio Ambiente, para avaliar o modelo em escalas espaço-temporais maiores, foram selecionadas cinco microrregiões onde a cana-de-açúcar é tradicionalmente cultivada no Brasil: duas no Sudeste (Piracicaba e Presidente Prudente), duas no Nordeste (Petrolina e Recife) e uma no Centro-Oeste (Jataí). Essa seleção foi baseada na disponibilidade de registros de produtividade na base de dados SIDRA, do Instituto Brasileiro de Geografia e Estatística, para os anos de 1980-2010, além de abranger condições edafoclimáticas contrastantes para testar os modelos.


As projeções de produção para os cenários no período entre de 2070-2100 indicaram uma pequena tendência positiva com exceção da mesorregião de Jataí que apresentou tendência negativa. Cabral explica que a temperatura foi o principal fator para as tendências negativas observadas em Jataí e Presidente Prudente.


Temperaturas diurnas projetadas acima de 35°C diminuem a taxa de assimilação de carbono. Em Presidente Prudente, o efeito da alta temperatura só será percebido no final do século (2080-2100), enquanto que em Jataí, a média da taxa de assimilação de carbono em razão do fator temperatura começa a diminuir muito antes (2066). As simulações para Petrolina também mostraram um impacto negativo da alta temperatura a partir de 2072. Esse efeito foi amplificado pela maior concentração de CO2 atmosférico, pois induz melhor eficiência no uso da água. Apesar do aumento das temperaturas, não foi encontrada nenhuma tendência de seca e temperatura que afetasse significativamente as simulações nas regiões de Piracicaba e Recife.


Modelos bem ajustados às condições de sequeiro geralmente assumem que a capacidade fotossintética da cana começa a diminuir quando a água disponível no solo está entre 60% e 40%. No JULES, a assimilação de carbono da vegetação é reduzida linearmente com a umidade do solo, quando fica abaixo de um limite, que foi ajustado para reproduzir uma resposta ao estresse hídrico utilizado em modelos recentemente avaliados no Brasil.


O uso de bioenergia com captura e armazenamento de carbono é considerado uma estratégia essencial de mitigação para limitar o aquecimento global abaixo de 2°C. No entanto, é necessário melhorar a representação de culturas energéticas em modelos biofísicos para entender melhor a interação entre clima e produção de bioenergia.


Embora as culturas alimentares tenham modelos múltiplos e bem detalhados que fornecem avaliações robustas de impacto climático, os modelos para culturas de bioenergia ainda se encontram aquém em número de modelos e riqueza de detalhes.


As folhas e raízes da cana-de-açúcar têm uma taxa de respiração relativamente maior do que os caules; assim, espera-se que a taxa de respiração por unidade de biomassa seja maior em estágios iniciais de desenvolvimento do que no estágio de maturação, quando a biomassa do caule é o reservatório de carbono dominante. Se o desenvolvimento radicular não for limitante, a cana-de-açúcar pode resistir a veranicos moderados.


“A versão recém-calibrada do JULES pode ser aplicada para ajudar a entender as interações entre o clima e a produção de bioenergia no presente e em cenários de mudança do clima", destaca Osvaldo Cabral. O Brasil é o maior produtor respondendo por 40% da produção global de massa fresca de colmos em 8,6 milhões de hectares, de acordo com o IBGE. "É uma cultura estratégica para a produção de bioenergia e mitigação das mudanças climáticas, onde o bioetanol e a eletricidade a partir da biomassa da cana-de-açúcar compõem uma parcela significativa da matriz energética do Brasil”.

Importância da cultura para o Brasil:

A mistura do etanol na gasolina, desde 2003, fez o País deixar de emitir 520 milhões de toneladas de carbono. Além disso, o bagaço da cana, queimado em termoelétricas a vapor, chega a assegurar entre 13% e 15% da energia elétrica em São Paulo, durante o inverno.


Hoje, a cana ocupa 10,1 milhões de hectares ou 1,2% do território nacional, preservando o solo e extraindo poucos nutrientes, quando comparada ao feijão, soja ou milho. Há quatro séculos planta-se cana sobre cana no Nordeste e as terras seguem produtivas. Como metade do açúcar embarcado no mundo, em 2020, partiu de portos brasileiros, o Brasil arrecadou US$ 8,7 bilhões.


Em relação à safra brasileira de cana, o segundo levantamento da Conab para a safra 2022/23 estima uma produção de 572,9 milhões de toneladas, volume 1,02% inferior ao da safra passada e 3,9% menor que a projeção do levantamento anterior.


A queda na estimativa é decorrente da redução na área colhida e, ainda, das baixas precipitações e temperaturas registradas na região Centro-Sul do país, que impactaram negativamente o rendimento das lavouras de alguns estados dessa região. A projeção é de 8,13 milhões de hectares colhidos neste ciclo, representativos de uma queda de 2,6% em comparação com a safra passada.


Segundo a Conab, o principal motivo da perda de área colhida de cana-de-açúcar foi a concorrência oferecida pelos cultivos de soja e milho, mas a queda também é resultado das áreas de reforma que não puderam ser colhidas, dados os impactos da estiagem e das geadas ocorridas em 2021.


Diante desse cenário, as estimativas para a área de mudas e a área plantada cresceram 31,8% e 8,7%, somando, 265,7 mil hectares e 1,31 milhão de hectares.



Conteúdo: Embrapa Notícias - Meio Ambiente

16 visualizações0 comentário